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Abstract—In this paper, we further develop our framework
to design new assistance and rehabilitation protocols based on
motor primitives. In particular, we extend our recent results of
oscillator-based assistance to the case of walking. The adaptive
oscillator used in this paper is capable of predicting the angular
position of the user’s joints in the future, based on the pattern
learned during preceding cycles. Assistance is then provided
by attracting the joints to this future position using a force
field in a compliant lower-limb exoskeleton. To demonstrate the
method efficiency, we computed the rate of metabolic energy
expended by the participants during a walking task, with and
without assistance. Results show a significant decrease of energy
expenditure with the assistance switched on, although not to a
point to entirely compensate for the burden due to the exoskeleton
lack of transparency. The results further show changes in the
kinematics: with assistance, the participants walked with a faster
cadence and ampler movements. These results tend to prove the
relevance of designing assistance protocols based on adaptive
oscillators (or primitives in general) and pave the way to the
design of new rehabilitation protocols.

I. INTRODUCTION

All robots used for movement assistance or rehabilitation
intimately interface with humans, and therefore require to
properly address the challenges related to this close interaction
[1]. This is particularly the case for lower-limb exoskeletons,
their structure being generally parallel to the human leg [2],
[3]. Any human movements can be considered as a “perturba-
tion” for the robot controller, which has to decide whether this
perturbation has to be rejected, or whether the controller has
to be adapted. On the broad spectrum of possible interaction
levels, the two extremes are unidirectional: (i) the user is
enslaved to the robot; and (ii) the robot is enslaved to the
user. The first case is well exemplified by the early versions
of lower-limb rehabilitation devices, which forced the user
to follow pre-specified trajectories using stiff controllers [4],

[5]. This approach however proved to be suboptimal, due to
its inherent limitation to promote voluntary movements. As
a consequence, “assist-as-needed” emerged as a new standard
[6]–[9]. The other extreme includes the robots used to amplify
the torque produced by the human, which can be estimated
e.g. by sensing the surface EMGs [10], [11]. This approach
has also intrinsic limitations due to the poor accuracy and
potential invasiveness (skin irritation, etc) of EMG sensing.

Recently, we proposed a new paradigm for assistive robotics
which combines the advantages of both approaches [12],
[13]: Providing a trajectory-free movement assistance without
requiring complex sensing. The idea behind our approach was
to incorporate some a priori knowledge about the movement
within the robot controller — as a sort of primitive [14] — and
to use the intrinsic adaptivity of this primitive to constantly
adapt to the user intention. Concretely, this was achieved by
coding our primitive as a system of differential equations
with desired dynamical behavior [15]. Our first contributions
focused on a proof of concept: a simple sinusoidal movement
about the elbow around the vertical position. Therefore, the
primitive we used was a single adaptive oscillator capable
of learning the movement features (amplitude, frequency, etc)
[16], [17]. Using an inverse dynamical model, we were able
to estimate the torque applied by the human, and to feedback
a fraction of it to provide assistance.

The goal of this paper is to demonstrate the relevance of
this approach to a more functional task, i.e. walking. Said
differently, this paper objective is to show that it is possible to
assist walking of healthy participants with an oscillator-based
controller, while leaving all the gait parameters (cadence, pat-
tern) free to be modified by the participants. As a consequence,
two extra challenges appear with respect to the simple elbow
experiment: (i) the joints do not follow sinusoidal patterns,
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such that their trajectory envelope cannot be assumed to be
known a priori; and (ii) deriving an accurate inverse model is
much more difficult, mainly because of the discontinuities due
to contacts with the ground. To solve the first challenge, we
propose a new primitive, which couples the adaptive oscillator
to a non-linear filter, learning the trajectory envelope [18]. To
solve the second challenge, we propose a model-free version
of our approach, by implementing the assitive torque with an
adaptive force field.

We tested our approach using the LOPES, a lightweight
lower-limb exoskeleton with compliant actuators [9], [19]–
[21]. We monitored the rate of energy expended by human
subjects from their oxygen consumption and carbon dioxide
expulsion, during walking with and without assistance. The
goal of this paper is to establish that our controller helped
the users during walking, such that they reduced their rate of
energy expenditure with respect to the unassisted case. For
the sake of simplicity, we assisted only the hips and we report
results related to steady-state behavior.

II. METHODS

A. Walking assistance using adaptive oscillators

In this section, we will describe the algorithm used to
provide walking assistance. We will explain this algorithm
sequentially, starting from an oscillator that is tuned to filter
a single DOF movement along a sinusoidal pattern, to end up
with an assistance method that is suitable for several joints and
the non-sinusoidal profiles encountered in human walking.

1) Oscillator-based filtering of a sinusoidally moving joint:
The central element of our assistance method is an adaptive
oscillator, a tool developed by Righetti et al. [16], [17]
and used in many applications [13], [22]. Here, we used a
simplified version of the modified Hopf oscillator proposed
in [16], by projecting this oscillator into polar coordinates
and keeping the phase equation only. We simply obtained an
augmented phase oscillator [17]:

φ̇(t) = ω(t) + νF (t) cosφ(t), (1)

where, φ(t) is the oscillator phase, ω(t) its intrinsic frequency,
and ν the learning parameter determining the speed of phase
synchronization to the periodic teaching signal F (t). In order
to learn the frequency of the teaching signal F (t), instead of
doing mere synchronization only, the oscillator frequency was
turned into a new state variable, integrating the phase update:

ω̇(t) = νF (t) cosφ(t). (2)

From (2), it can be established that the integrator argument
sums up to zero over one period (i.e. ω converges) if the
frequency ω is equal to the frequency of the teaching signal. As
such, Righetti et al. developed an adaptive oscillator, having
the capacity to constantly adapt its intrinsic frequency to the
teaching signal frequency, and to keep this input frequency in
memory, i.e. in the state variable ω(t).

Let us now assume (i) that the joint to be assisted follows a
sinusoidal pattern, i.e. θ(t) = α1,in sin (ωint) + α0,in, where

α1,in, ωin, and α0,in are the amplitude, frequency, and offset
of this input, respectively; and (ii) that the adaptive oscillator
(1), (2) is synchronized with this input. As a consequence, a
filtered version of θ(t) can be obtained from:

θ̂(t) = α1(t) sinφ(t) + α0(t), (3)

where α1(t), φ(t), and α0(t) are supposed to converge to the
corresponding input variables. Righetti et al. [23] showed that
this convergence is guaranteed by using the difference between
the input θ(t) and the filtered (or estimated) input θ̂(t) as
teaching signal: F (t) = θ(t)− θ̂(t), and by implementing the
following integrators for learning the amplitude and offset:

α̇0(t) = ηF (t), α̇1(t) = ηF (t) sinφ(t), (4)

where η is the integrator gain. Again, (2) and (4) reach steady-
state when F (t) = 0, i.e. when θ̂(t) = θ(t). If θ(t) is only
quasi-sinusoidal, i.e. if α1,in, ωin, and α0,in slowly vary with
time, θ̂(t) will be a low-pass filtered version of θ(t), but,
importantly, both will still be phase-synchronized on average.
This is a critical difference between this approach and classical
low-pass filtering, which unavoidably introduces delay.

In [12], [13], we used this approach to retrieve not only the
filtered position, but also the filtered velocity and acceleration
of the elbow during (quasi-)sinusoidal movements, and to
assist the movement by using an inverse dynamical model of
the elbow+forearm. This approach is however unrealistic in
walking assistance, due to the complex dynamics introduced
by ground contacts, and the non-sinusoidal profile of the leg
joints during walking.

2) Real-time Fourier decomposition of non-sinusoidal but
periodic signals: If the input signal is periodic but non-
sinusoidal, Righetti et al. [23] proposed to extend the method
explained above by putting several of these oscillators in
parallel (see Fig. 1A). As such, each of these oscillators
should learn one frequency component of the input signal,
providing therefore a kind of real-time Fourier decomposition.
We slightly adapted the equations of [23] by assuming that the
input signal is periodic. Therefore, only the main frequency
has to be learned, the others being multiples of it. Concretely,
(1), (2), and (4) are changed to:

φ̇i(t) = iω(t) + νF (t) cosφi(t),

ω̇(t) = νF (t) cosφ1(t), (5)
α̇i(t) = ηF (t) sinφi(t),

with F (t) = θ(t) − θ̂(t), θ̂(t) =
∑K
i=0 αi(t) sinφi(t), and

i ∈ [0,K] are the K + 1 parallel oscillators. Note that, in (5),
the 0th oscillator is still a simple integrator, learning the input
offset, with φ0(t) = φ0(0) = π/2.

3) Coupling with a kernel-based non-linear filter: During
pilot tests, a problem appeared when using the pool of adaptive
oscillators (5): A large number of oscillators was required to
properly learn dwell intervals within the joint signals, like
e.g. the plateau in the knee profile during the stance phase of
walking (see Fig. 2). Indeed, these dwell intervals introduce
high frequency harmonics in the spectrum of the input signal.
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Fig. 1. Online learning of a periodic but non-sinusoidal input signal θ(t).
A: pool of adaptive oscillators (1), (4), decomposing the input into a real-
time Fourier series. B: kernel-based non-linear filter, mapping the phase of
the main harmonic φ1(t) to the input envelope. Adapted from [18].

To solve this drawback associated with the parallel pro-
cessing of a limited number of oscillators (5), we coupled the
pool of adaptive oscillators to a kernel-based non-linear filter,
similarly to [18] (Fig. 1). Note however that we simplified the
derivations made in [18] since our application did not target
imitation learning, but only filtering.

This is formulated as a supervised learning problem:

θ̂?(t) =

∑
Ψi(φ1(t))wi∑
Ψi(φ1(t))

, (6)

where Ψi(φ(t)) = exp (h(cos (φ(t)− ci)− 1)) is a set of N
Gaussian-like kernel functions. The parameter h determines
their width, and ci their center (equally spaced between 0 and
2π in N steps). This algorithm then constructs a series of local
mappings of the input θ(t) as a function of the phase φ1(t),
and an estimate of the input θ̂?(t) from a weighted sum of
these mappings.

Locally weighted regression corresponds to finding, for each
kernel function Ψi, the weight vector wi which minimizes the
quadratic error criterion: Ji =

∑M
k=1 Ψi(k) (θ(k)− wi(k))

2,
where the k’s are the M discrete time steps. Following
[18], [24], an on-line version of this learning process can be
implemented using incremental regression, which is done with
the use of recursive least squares with a forgetting factor of
λ, to determine the weights wi. Given the target data θ(t), wi
is updated by:

wi(k + 1) = wi(k) + Ψi(k)Pi(k + 1) (θ(k)− wi(k)) ,

Pi(k + 1) =
1

λ

(
Pi(k)− Pi(k)2

λ
Ψi(k) + Pi(k)

)
, (7)

where P is the inverse covariance matrix [25]. If λ < 1, the
regression gives more weight to recent data.

Fig. 2 shows an example of the filtering capacity of the pre-
sented methods. As anticipated, a pool of 3 oscillators (actually
2 oscillators and 1 integrator) is too small for doing proper
filtering, mainly during the stance phase (dwell intervals). In
contrast, the two other methods perform equally well, one with
11 oscillators, and the other with 3 oscillators and a kernel
filter. This is this later method which was implemented in this
paper. Interestingly, the figure confirms that there is no delay,
on average, between the input signal and the filter output.

Fig. 2. Different filters applied to the angular displacement of the knee during
walking (8 representative seconds are shown): in black: the raw signal; in blue:
filtering with a pool of 3 adaptive oscillators; in red: filtering with a pool of
11 adaptive oscillators; and in dashed green: filtering with a pool of 3 adaptive
oscillators and a non-linear kernel filter.

4) Coupling between different joints: So far, we explained
how to use adaptive oscillators to get an on-line estimate
of a filtered single input. However, in walking several joints
are involved, and are supposed to move at the same global
frequency. Therefore, by copying the above-mentioned system
to each of the joint, the global convergence of the system
frequency can be enhanced by forcing the different oscillators
to reach a consensus. For example, the frequency equation in
(5) can be replaced by:

ω̇j(t) = ν
G∑
j=1

Fj(t) cosφ1,j(t)/G, (8)

where G is the number of independent joints involved in the
task. Similarly, amplitudes can be coupled among the two
symmetrical (left and right) joints, since they are supposed
to follow the same periodic profile.

5) Assistance: Finally, to provide assistance without relying
on an inverse dynamical model of the body (as done in [12],
[13]), we adopted the following approach. First, the system
presented above was used to provide an estimate of the joint(s)
position in the future. Indeed, recomputing (6) by replacing
φ(t) by φ(t) + ∆φ, provides an estimate of what the joint
position should be at a time corresponding to a ∆φ phase
lead in the future:

θ̂?,∆(t) =

∑
Ψi,∆(φ1(t))wi∑
Ψi,∆(φ1(t))

, (9)

Ψi,∆(φ(t)) = exp (h(cos (φ(t) + ∆φ − ci)− 1)).

Second, this estimated future position θ̂?,∆(t) can be used
to attract the user’s joint in a force field:

τref (t) = kf

(
θ̂?,∆(t)− θ(t)

)
, (10)

where kf is the field stiffness and τref (t) the desired torque
to be applied by the assistive device.

In sum, the method of assistance we implemented here
is aiming at continuously attracting the user’s joints to their
own future (using the force field (9), (10)), but leaving the
opportunity to the user to constantly adapt the frequency
(through the adaptive oscillator (5)) and shape (through the
filter (7)) of this attractive pattern. For simplicity, we used a
constant stiffness kf and no damping in the force field (10).
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Fig. 3. Picture of an healthy subject wearing the LOPES.

B. Participants

Nine healthy participants took part in the experiment (aged
24-28, weight 58-86, four female, five male). None of them
ever experienced the oscillator-based protocol we describe in
this paper before the actual acquisition. All participants were
volunteers and signed an informed consent form.

C. Assistive device and experimental setup

For testing our approach, we used the LOPES (see Fig.
3), a treadmill-based lower-limb exoskeleton developed at
the University of Twente [9], [19]–[21], and capable of
assisting 8 DOFs of the lower-limbs (right and left hip
abduction/adduction, hip flexion/extension, and knee flex-
ion/extension, forward/backward and sideways movements of
the pelvis) by providing torques through the principle of
series elastic actuation [21], [26]. The LOPES is lightweight
and actuation is produced remotely by means of Bowden
cables. Therefore, it is considered as a close-to-transparent
device, inducing only small changes in the kinematic and EMG
patterns with respect to normal walking [20].

The joints kinematics was recorded using the LOPES sen-
sors, both to feed the adaptive oscillators, and to proceed with
post-hoc analyses. The LOPES was controlled using Matlab
(the MatWorks, Natick, MA), with a sampling time of 1ms.

The energy expenditure was measured by the Oxycon Pro
system (Jaeger, Hoechberg, Germany). Subjects were con-
nected to the Oxycon with a flexible tube making an airtight
seal to a facemask, measuring oxygen consumption (VO2

)
and the volume expiration (VE). Every five seconds (0.2Hz)
these parameters were measured and stored on the personal
computer connected to the Oxycon.

D. Experimental protocol

The participant comfortably walked on the treadmill, wear-
ing the LOPES on both legs, except during the “free walking”
condition, detailed later. The LOPES was fastened via attach-
ment cuffs to the middle of the thighs, and the top and bottom
of the calves (see Figure 3), and the pelvis module was further

attached to the participant belly with a belt. Participants were
asked to walk comfortably with a treadmill speed of 3.6km/h.

This study focused on assistance in the sagittal plane, and
we decided to assist only the hips during walking. To improve
the LOPES transparency, a force proportional to the joints’
speed was applied to the hips and knees to compensate for
the friction induced by the exoskeleton’s joints.

Each participant underwent four types of condition, in a
randomized order:

1) In the “free walking” condition, participants walked
on the treadmill without wearing the LOPES. This
condition lasted a single trial of about 6 minutes, and
was used to evaluate the level of expended energy during
normal walking.

2) In the “transparent” condition, the LOPES was con-
trolled to be as transparent as possible, i.e. by setting
kf = 0 in (10), for each joint. This condition lasted a
single trial of about 6 minutes, and was used to evaluate
the actual level of transparency of the LOPES on gait
cadence and energy consumption.

3) In the “low assistance” condition, participants received
an assitance of kf = 0.0142WNm/deg at the hips, where
W is the participant’s total body weight. This condition
was made of two trials: the first one lasted about 6
minutes at a constant treadmill speed, and the second one
lasted about 12 minutes with treadmill speed variations.
The purpose of this second trial was to evaluate the
adaptation time constant of both the participant and the
assistive algorithm, but it will not be analyzed here due
to space constraints.

4) In the “high assistance” condition, participants received
an assitance of kf = 0.0284WNm/deg at the hips. This
condition was also made of two trials being 6 and 12
minutes long, and keeping only the first one for the
analyses of this paper.

Note that the two levels of assistance were calculated based
on pilot results, to provide, on average, an absolute assisitive
torque corresponding to 50% and 100% of the average absolute
torque produced by the hip during walking, as reported in
[27]. This paper reports data corresponding only to steady-
state behavior, such that we kept only the last 2 minutes of
the 6 minutes long trials in the database.

For setting up the filter and the assistive algorithm, we
used the following parameters: for the adaptive oscillator:
ν = 6, η = 0.25, K = 6, and full coupling between the
estimated frequencies and amplitudes; for the non-linear filter:
λ = 0.9999, N = 90, and h = 144; and for the predictor:
∆φ = 36◦ (10% of the cycle).

E. Data analysis and statistics

To display the movement kinematics, the actual angular
position signals recorded by the LOPES were off-line low-
pass filtered (Butterworth, forward and backward in time, 3rd
order, cut-off frequency of 10Hz).

The following variables were computed for statistics:
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Fig. 4. Angular trajectory of the right hip (top) and knee (bottom) during
the “transparent” condition (solid light gray), the “low assistance” condition
(dashed dark gray), and the “high assistance” condition (dotted black). Labels
show the periods of double support (DS), swing, and single support stance.
Averaged across participants.

• The average absolute error between the estimation of the
angular position in the future, delayed by the amount of
time anticipation, and the actual position, i.e.:∣∣∣∣θ̂?,∆(t+

∆φ

ω(t)

)
− θ(t)

∣∣∣∣
t

. (11)

• Two kinematics landmarks, namely the hips and knees
displacement range (difference between maximum and
minimum position) and the cycle duration. These were
computed for each cycle, then averaged per condition and
participant. The cycle duration was computed from gait
events that were extracted from COP movements recorded
by a force plate bellow the treadmill, and was therefore
also available in the “free walking” condition.

• The normalized rate of expended energy, which was
inferred from the formula used in [28]:

Ē[W/kg] =
16.58V̇O2

+ 4.51V̇CO2

W
, (12)

where V̇O2
and V̇CO2

[ml/s] are the rates of O2 and CO2

volume involved in respiratory exchange.
When appropriate, post-hoc comparisons of the ANOVA

levels were tested using the Tukey-Kramer method. All data
processing and statistics were computed using Matlab, and
with a p factor of 0.05.

III. RESULTS

A. Oscillator predictive capacity

The oscillator predictive capacity proved to be very good,
the average absolute error computed in (11) being below
1.5◦ for each participant, leg, and condition. A 2-factor
(leg×condition) repeated measures ANOVA revealed signif-
icance for the condition factor only: the predictions tended to
be a bit more accurate when assistance was provided (kf > 0).

B. Kinematics variables

The angular kinematic profiles are shown in Fig. 4 for the
right leg (they are very similar, but with a phase-shift of 50%,
for the left one). The figure shows that, when assistance was
delivered, the movements tended to be more ample, even for

Fig. 5. Normalized expended energy by the participants during the different
conditions. Error bars represent the standard error of the mean.

the knee (which was never assisted). This was confirmed by
repeated measures ANOVAs: for the hip, the displacement
range significantly depended on the condition, but neither
on the leg nor on the interaction between the two factors.
For the knee, it depended both on the condition and on
the leg (the left knee did slightly larger movements), but
not on their interaction. Regarding the cycle duration, the
participants also tended to change this parameter as a function
of the recieved assistance. In both the “free walking” and
“transparent” conditions, the mean cycle duration was around
1.24s. In the “low assitance” condition, it dropped around 1.2s,
to eventually reach 1.14s in the “high assitance” condition.
Repeated measures ANOVA reached significance, with post-
hoc tests establishing a significant difference between the
“high assitance” condition and the two unassisted conditions.

In sum, as the assistance increased, the participants did
larger movements, and increased the walking cadence.

Finally, we computed the rate of metabolic energy con-
sumption, from (12). Fig. 5 shows this result. First, it is
visible that the supposedly transparent exoskeleton actually
significantly loaded the participants, since the expended en-
ergy increased from the “free walking” to the “transparent”
condition. Second, the figure establishes the efficiency of the
assistance, since the expended energy decreased again for the
two assisted conditions, to about two thirds of the difference
with the “free walking” condition. The repeated measures
ANOVA confirmed the significance of this modulation, and
post-hoc tests revealed significant pairwise differences only
between the “transparent” condition and any of the others.
Note that similar results would have been obtained on the “cost
of transport”, i.e. the metabolic rate divided by the gait forward
speed since, in this case, the gait speed was maintained to a
constant value across conditions (3.6km/h) by the treadmill.

IV. DISCUSSION AND CONCLUSION

In this paper, we presented an extension of our previ-
ous work about using oscillator-based controller to assist
rhythmic movements. In particular, we focused on walking
assistance, using the LOPES exoskeleton. We derived a model-
free version of our approach, whose principle is to attract
the user’s joints “to their own future”, this attractor being
constantly adapted to movement changes. Our results first
established that there were significant changes in the gait
pattern depending whether the participant was assisted or not.
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A possible explanation to this behavior is that the assistance
method — which is based on dynamical interactions between
the user and the device — changed the resonance frequency
of the coupled system, therefore attracting the user to a new
cadence [29] and a different pattern [27].

More interestingly, we also showed that our assistance was
capable of actually supporting the user, since the energy
expended during the task significantly decreased. However,
we only managed to reach a level slightly above the one
during free walking, such that benefit of our assistance was
completely washed out by the burden of wearing the device.
Possible directions to improve this result would require to (i)
make the LOPES more transparent, (ii) increase the level of
assistance (although Fig. 5 already shows a kind of saturation),
(iii) give longer familiarization trials to the users, and (iv)
assist the other joints of the leg (knee, ankle) in a similar
manner. This last point would however necessitate a careful
characterization of the different force fields, and of their
mutual interaction. All in all, we think that the present results
are encouraging, given the challenge related to reduce the
metabolic cost of free walking with an assistive device, as
reported in the literature [11], [30].

In conclusion, we think that these results support our
approach of designing new protocols for rehabilitation and
assistance based on primitives, namely oscillators in the case
of rhythmic movements. Ideally, this framework could be
adapted to a lot of situations, due to the intrinsic flexibility
of dynamical systems. In the future, we will explore the adap-
tation of this framework to rehabilitation protocols, targeting
the needs of specific patients.
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